returns the discrete Fourier transform of array C in the global array "transform".
C is an array of n samples (n must be a power of 2) of a complex function y(t). For sample period dt, "transform" will contain the positive and negative complex frequency components arranged as
transform[1] f=0 [1,1] real. [1,2] imaginary.
transform[2] f=1/(n*dt)
...
transform[n/2+1] f=1/(2*dt) also f=-1/(2*dt)
transform[n/2+2] f=-(n/2-1)/(n*dt)
...
transform[n] f=-1/(n*dt)
~
y(t) = cos(360*f*t+phi) -- example function ** uses degrees **
c(t) = {y(t),0} -- make it a complex function
C[i] = c(dt*(i-1)) dim[n] -- sample it at period dt